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The authors examine axisymmetric supersonic air flow over a spherically blunted cone at 
Reynolds numbers where various flow regimes exist in the shock layer. The influence of sur- 
face blowing on the characteristics of the laminar and turbulent viscous shock layer was 
analyzed in [i, 2]. This paper addresses the influence of blowing intensity and the distri- 
bution laws of the blown gas along the spherical blunting generator on the characteristics of 
heat and mass transfer and compares the results with the experimental data of [3]. 

i. In the natural coordinate system (s, n) the system of equations of the viscous shock 
layer for mean quantities, using the dimensionless variables introduced in [4], has the form 

O (pV#'/h) = O; 
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The boundary conditions at the shock (n = n s) for the range of Reynolds number con- 
sidered is written as the ordinary Rankine-Hugoniot relations: 
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On the body (n = 0) for blown gas of the same composition as the incident stream gas 
we have 

~--= 0, (pc') .... (p&(.~'), h .... h .... ( i. 7 ) 

The conditions on the axis of symmetry (s = 0) are: 

= O, Ov/Os = OplOs = OltlOs = O. ( 1 . 8 )  

T h e  s h o c k  s l o p e  a n g l e  o i s  a s s o c i a t e d  w i t h  t h e  s t a n d o f f  d i s t a n c e  n s b y  t h e  r e l a t i o n  d n s / d s  = 
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In Eqs. (1.1)-(1.8) u and v are the components of the vectorial velocity, referenced to 
v~; p, p are the gas pressure and density, referenced to p~v$ and p=, respectively; H = h + 
u2/2 is the enthalpy, referenced to v~; T is the temperature, referenced to the characteristic 
value T, = v2/cp; H is the coefficient of viscosity, referenced to its own characteristic 
value, H,(T,); h I = i + kn, r = r w + ncos~ are Lam6 coefficients; g2 = H*/(p~v~RN) is a 
dimensionless parameter, the inverse Reynolds number; lxz .... b + F~t: Pr~ :-- ~PrPr~(~I)rt + rp, ter); 
the subscripts ~, s, and w refer to the flow characteristics in the incident stream, behind 
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the shock wave, and on the body surface, respectively; t refers to quantities associated with 
turbulent transfer. 

CI--C)I 'al~, We find the coefficient of molecular viscosity from the Sutherland formula ~t = T--+T 

C = tt0.4 T 2 T ( o~p is the dimensionless temperature). We determine the coefficient of 
(?-- t) Moo oor, 

t u r b u l e n t  v i s c o s i t y  Vt u s i n g  t h e  t w o - l a y e r  m o d e l  o f  [ 5 ] .  F o r  t h e  d i m e n s i o n l e s s  v a r i a b l e s  
used we can write for the wall region 

o,t6m? [ f ,,'~1 ~ ~,, 
= J 
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In the outer region we have 

~I l, 

+ ' ' t T t  ; 

Here and below the subscript e denotes the characteristics at the outer edge of the boundary 
layer in the shock layer; the values n e and u e vary due to variation of the shock layer 
boundary, and we evaluate their influence on the flow quantities at the body surface. 

We computed the transition flow region using the formulas of [6]. For flow over a 
spherically blunted body the intermittence coefficient F can be written in the form 

~1 d. .  In ~ h) .s, 
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where ]~ep I f,t,;p Mp = (uyi 1 
8 z [b, ' k - e / , ~  ~p are the Reynolds and Mach numbers computed at the point 

where the laminar boundary layer loses stability. The coordinate of this point Sp, repre- 
senting the start of the flow transition region, was either defined experimentally or was 
computed from the critical Reynolds number 

Jt e 

I -- dn. ]~o** 8~ ~,  -- 200, 6** = 
, Pc~Q. 

0 

In the laminar flow regime region F = 0, and in the region of turbulent flow F = i. 

2. Methods based on global iterations of the shock wave shape [4, 7] are efficient 
methods of solving the system of equations of the viscous shock layer. To compute the system 
of equations (1.1)-(1.5) we used the following transformation of the independent variables 
[7]: 

~t 7ta 

" V',o i k 
0 0 

Using the global iteration method, for which the computing technique has been described in 
detail in [8], we numerically integrated the original boundary problem over a wide range of 
variation of Reynolds and Mach number. To stabilize the iteration process in the ongoing 
global iteration we used the slope of the curvature parameter at the point of discontinuity 
in the curvature of the sphere-cone generator. Difference schemes for systems of equations 
of parabolic and hyperbolic type were obtained using the interaction-interpolation method 
of [9]. For the turbulent flow regime in the shock layer we developed combined difference 
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schemes to ensure smoothing of the described characteristics in the laminar sublayer region 
and the turbulent core, and taking account of the nature of the variation of the turbulent 
viscosity across the shock layer. This increased the rate of convergence of the iterative 
process and allowed computation to Re~ = 108-109 for various flow rates of blown gas from the 
wetted body surface. For a turbulent flow regime across the shock layer we used a variable 
step size to achieve the required number of computing points in the laminar sublayer, As a 
test we used computations according to the boundary layer model and the Euler model. 

3. Figures 1 and 2 show results computed for flow over a spherically blunted cone of 
semivertex angle 5 ~ for governing parameters simulating the experimentally measured thermal 
characteristics with surface blowing in a wind tunnel [3]. The test conditions were M~ = 5. 
stagnation temperature Te0 = 525 K, T w = 288 K, model radius R N = 0.0508 m, stagnation pres- 
sure Pe0 = 0"625"i0s and 3.125"i0 s N/m 2 for the laminar and turbulent flow regimes, respec- 
tively. 

Figure i shows curves of distribution of the dimensionless heat flux q,~ = ~o~/~op~ov~/% 
for laminar and turbulent flow regimes in the shock layer (curves I, 2), the surface pres- 
sure Pw, and the shock standoff distance n s (curves 3, 4), with no surface gas blowing. In 

{~' ~1l~ PeOVmRN 
the expression for qw the quantity ~t~~7~,]~ is the dimensional heat flux, and I]e =- F~0 

(vm ~-~F~ is connected with s 2 as follows: ~ -~ 9~~ ~T_i~ (~__!0 Be] -i For the conditions assumed 

Re = 7.74.10 ~ and 3.87.186. Here we also show the experimentally measured heat flux from 
[3] and the theoretical characteristics from the tables of [10]. With the dimensionless 
quantities assumed the heat fluxes in the section where the laminar flow regime holds coin- 
cide, but in the developed turbulence regime qw increases appreciably and the maximum heat 
flux isreached in the vicinity of the sonic line. The surface pressure and the position of 
the shock wave coincide for the values of Re examined. 

The influence of gas blowing from the spherically blunted surface at constant mass flow 
levels (pv) w on the heat flux is sh__own in Fig. 2a, where curves 1 and 2 correspond to turbu- 
lent flow (Re = 3.87.10 ~) with (pv) w = 1.52; and for curve 3 (the dimensionless mass flow 

G~--- F~]-~ " Curve 3 was obtained for laminar (pv) w- is associated with the dimension: (~),~ I'~0~ /. 

flow with (P--V)w = 0.5. The broken lines of Fig. 2 are taken from Fig. 1 with (pv) w = O, and 
by comparing the corresponding curves we can analyze the attenuation of __heat flux in the ther- 
mal curtain zone on the conical part of the surface. The symbols [for (pv) w = 1.52] indicate 
the experimental data, which agree quite saisfactorily with the computed values on the spheri- 
cal part of the body in the turbulent flow region. On the conical surface the computed values 
behind the conjugate point with the spherical nose for s < 5.0 lie markedly above the experi- 
mental data, which was also noted in [3], the reason for the ~ack of agreement perhaps being 
the unsteady nature of the heat transfer processes occurring in the conduct of the experiment. 

For the computed Re and the above flow rates of blown gas (see Fig. 2) we observe a 
strong decrease of heat flux, but here the surface pressure and the standoff distance remain 
practically unchanged. Thus, for large Re in the various flow regimes in the shock layer we 
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find a range of blown gas flow rate to achieve the required decrease of heat flux to the body, 
and therefore the allowance shell temperature conditions while retaining the aerodynamic 
characteristics. 

It is of interest to evaluate the influence of the blown gas distribution law on the heat 
flux to the spherical porous shell and the conical surface. In Fig. 2b the curves 2 show the 
heat flux qw(S) for (p-V)w(S) = const = 1.785 (the dot-dash line 2), and the curves 1 were 
obtained for the mass flow rate distribution shown by the dot-dash line i. Here the total 

mass of coolant gas .~l(~, (pc~),: sin s'ds is the same for both cases, but the mass flow rate law 
0 

was obtained by assigning the pressure Pk in the cavity of the porous spherical shell. Using 
the equation of motion for a thin porous shell in steady state in the form of the Darcy law, 
allowing for the quadratic term 

@,'al~ == Age" -}- t~pu~(O ( 3 . 1 )  

and the mass conservation law 

(pwv) = (l,v),,, ( 3 . 2 )  

it is straightforward, after integrating Eq. (3.1) and using the equation of state P = pRT/M, 
to write the expression 

(pu)~= - - A ~ +  ~,)~+ ~ 

For t y p i c a l  v a l u e s  o f  t h e  s t r u c t u r a l  c h a r a c t e r i s t i c s  o f  m a t e r i a l s  A and B, p o r o s i t y  
[11] and a g i v e n  s h e l l  t h i c k n e s s  L, one can e a s i l y  d e t e r m i n e  t h e  blown gas f low r a t e  r a t e  

(m')w(S)- 
As one might expect, for the flow rate law determined for the frontal part of the spher- 

ical shell in the laminar flow region, and for part of the turbulent flow region the heat 
fluxes qw exceed the corresponding values obtained for a constant flow rate, while on the 
lateral surfaces they are reduced compared with curve 2. On the whole the length of the 
thermal curtain is determined by the total mass of cold blown gas, and for the laws of (-~)w • 
(s) considered it depends weakly on the nature of the blowing distribution along the genera- 
tor. 

For a porous spherical shell Fig. 3 shows the results of reducing the solution of qw(S)/ 
q~(s) as a function of the dimensionless parameter a = (PV)w(He0 - Hw)/q~ at various points 
along the contour. Here q~(s) is the heat flux with no blowing; the open points show the 
computed data, and the closed points are the experimental values [3]. Curve 1 was obtained 
from a formula of [12] for the vicinity of the forward stagnation point and corresponds to 
laminar flow, and curve 2 corresponds to a formula of [13] for turbulent flow on a plate. 
It can be seen that in the region of developed turbulence on the sphere the results agree 
satisfactorily with experimental data and can be used to evaluate the influence of blowing on 
the flux. In processing the computations we used different laws for (PV)w(S) (constant flow 
rate), and also dependence (3.3). 

Figure 4 shows the reduced results of solving on the conical part of the body in the 
thermal curtain zone for turbulent flow. As was done in [14], as a blowing parameter we took 
the ratio of the total mass of blown gas to the product of the heat transfer coefficient at 
the section considered with no blowing to the surface area E(s) from the line where the blow- 

sf 

ing ends to the section considered b = ~aRA, '~ 2 ](pu),~sinsds (Heo--hw)/(q~(s) I] (s)). The open and closed 
0 
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points show the constant flow rate case and Eq. (3.3), respectively. Processing of the ex- 
perimental data of [3] also gives values close to the theory. We note that the results ob- 
tained lie above the data of [14], which is evidently due to the difference of geometry of 
the wetted bodies and to the unsteady nature of the heat transfer process in an experiment 
conducted on thermally nonconducting materials in the zone behind the blowing section. For 
these conditions of the isothermal surface from the data reduction we can evaluate the heat 
flux to the conical surface as a function of the governing parameters of the problem. 
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DYNAMICS OF LOW-AMPLITUDE PULSE WAVES IN VAPOR -GAS -DROP SYSTEMS 

D. A. Gubaidullin and A. I. Ivandaev UDC 532.529:534.2 

The propagation of weak monochromatic waves in vapor and gas suspensions, as well as in 
gas, vapor, and fluid drop mixtures, was treated in [1-8]. In the present paper we present 
results on propagation of low-amplitude pulse perturbations in single- and two-component gas- 
drop systems. An evolution wave-like equation, describing the propagation of linear pertur- 
bations in single-component suspensions in the prsence of phase transformations, is obtained 
and analyzed. Using the fast Fourier transform method, the evolution of a single pulse per- 
turbation in a two-component vapor-gas-drop mixture is calculated. The evolution of inter- 
phase friction and phase transformation effects on the wave evolution process are analyzed. 

The two-velocity and three-temperature continuum model [9] is used under conditions of 
acoustic homogeneity of the monodisperse mixture under consideration to investigate a variety 
of effects. We write down the linearized equations of planar one-dimensional motion in the 
presence of phase transitions. In a coordinate system in which the unperturbed mixture is at 
rest the conservation equations of mass, momentum, and energy of the phases are [8] 

r �9 p 

Ov 2 
)T + Plo ~ = --no~ v~, ~ + P co ~7 = -- tz0J vz, + P20 ~ = a0]~, 

�9 r �9 t , t 

Ov I 8p t ~v, 2 
Plo-5-F + ~ + 7~ot = O, p~,--~- = rZo/, 
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